Predicting Spruce Taiga Distribution in Northeast Asia Using Species Distribution Models: Glacial Refugia, Mid-Holocene Expansion and Future Predictions for Global Warming
نویسندگان
چکیده
Spruce taiga forests in Northeast Asia are of great economic and conservation importance. Continued climate warming may cause profound changes their distribution. We use prognostic retrospective species distribution models based on the Random Forest machine learning method to estimate potential range change dominant conifer Jezo spruce (Picea jezoensis (Siebold & Zucc.) Carrière) for year 2070 scenarios past epochs–the Last Glacial Maximum (LGM) (~21,000 years before present) mid-Holocene Climatic Optimum (MHO) (~7000 using MIROC-ESM CCSM4 models. The current suitable climatic conditions P. estimated be 500,000 km2. Both show similar trends future ranges but provide different quantitative areal estimates. During LGM, main part was located much further south than today at 35–45° N. Projected will a greater distributional has occurred since MHO. Overlapping times that Changbai Mountains, central parts Japanese Alps, Hokkaido, Sikhote-Alin Mountains remain refugia until 2070. establishment artificial forest stands intraspecific taxa climate-acceptable regions important preservation genetic diversity.
منابع مشابه
Multiple Glacial Refugia of the Low-Dispersal Ground Beetle Carabus irregularis: Molecular Data Support Predictions of Species Distribution Models
Classical glacial refugia such as the southern European peninsulas were important for species survival during glacial periods and acted as sources of post-glacial colonisation processes. Only recently, some studies have provided evidence for glacial refugia north of the southern European peninsulas. In the present study, we combined species distribution models (SDMs) with phylogeographic analys...
متن کاملSpecies distribution modelling of invasive alien species; Pterois miles for current distribution and future suitable habitats
The present study aims to predict the potential geographic distribution and future expansion of invasive alien lionfish (Pterois miles) with ecological niche modelling along the Mediterranean Sea. The primary data consisted of occurrence points of P. miles in the Mediterranean and marine climatic data layers were collected from global databases. All the used models run 100% su...
متن کاملfault location in power distribution networks using matching algorithm
چکیده رساله/پایان نامه : تاکنون روشهای متعددی در ارتباط با مکان یابی خطا در شبکه انتقال ارائه شده است. استفاده مستقیم از این روشها در شبکه توزیع به دلایلی همچون وجود انشعابهای متعدد، غیر یکنواختی فیدرها (خطوط کابلی، خطوط هوایی، سطح مقطع متفاوت انشعاب ها و تنه اصلی فیدر)، نامتعادلی (عدم جابجا شدگی خطوط، بارهای تکفاز و سه فاز)، ثابت نبودن بار و اندازه گیری مقادیر ولتاژ و جریان فقط در ابتدای...
Projecting future expansion of invasive species: comparing and improving methodologies for species distribution modeling.
Modeling the distributions of species, especially of invasive species in non-native ranges, involves multiple challenges. Here, we developed some novel approaches to species distribution modeling aimed at reducing the influences of such challenges and improving the realism of projections. We estimated species-environment relationships for Parthenium hysterophorus L. (Asteraceae) with four model...
متن کاملPredicting the Climatic Ecological Niche of Artemisia aucheri Boiss in Central Iran using Species Distribution Modeling
Changes in the geographical distribution of plants are one of the major impacts of the climate change. This study was aimed to predict the potential changes in the distribution of Artemisia aucheri Boiss in Isfahan rangelands. Therefore, six bioclimatic variables and two physiographic variables were used under the Generalized Linear Model (GLM), Flexible Denotative Analysis (FDA), Surface Range...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Forests
سال: 2023
ISSN: ['1999-4907']
DOI: https://doi.org/10.3390/f14020219